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1 Introduction

Vesicles constitute a well-defined model system for studying basic physical aspects of the more
complex biological cells. These cells consist of a structured inhomogeneous interior, where the
nucleus, cell organelles such as ribosomes, mitochondria and the golgi apparatus are embedded
in a highly viscous complex fluid formed by all sorts of proteins in an ionic aequous solution.
Cells are bounded by the cell membrane, which itself has a complex architecture, sketched in
Fig. 1. Its main element is a bilayer of various types of lipids into which proteins such as ion
channels and pumps are embedded. The sugar polymers of the outer glycocalix are anchored to
this membrane as well as an actin-spectrin network is attached to it on the cellular side in the
case of red-blood-cells.

Fig. 1: Cartoon of the cell membrane

Vesicles, to the contrary, are formed by a closed lipid bilayer only. Lipid molecules consist of
a hydrophilic dipolar or charged head group to which two hydrophobic hydrocarbon chains are
attached. In a bilayer these chains are shielded from the aqueous environment. Bilayers form
spontaneously in a process of self-aggregation (or self-organization) if lipids are dissolved in
aequous solution due to their amphiphilic nature. Given some experience, unilamellar vesicles
with sizes of several micron diameter can be obtained. Once a nice vesicle is formed, it can be
studied using videomicroscopy, see Fig. 2. Such observations have revealed an amazing variety
of shapes, some of which are reminiscent on the shapes of red-blood-cells, despite the fact that
vesicles lack so much of the complexity of cells and, in particular, their non-equilibrium nature.
A selection of these shapes of various symmetries and topologies is shown in Figs. 3-6.
This variety of shapes among which transformation have been induced by changing the tem-
perature or the osmotic condition prompted in the late eighties an intense and finally successful
search for a quantitative physical explanation of these phenomena.
In this lecture, I will outline the basic physical principles of fluid vesicles and their theoretical
description focussing on three main topics. In Section 2, the curvature model will be intro-
duced that leads to a quantitative understanding of the whole zoo of vesicle shapes and their
thermal fluctuations. Section 3 treats the adhesion or interaction of a vesicle with a substrate.
Section 4 deals with the dynamics of vesicles in particular in hydrodynamic flow fields. Such
non-equilibrium aspects of vesicles have become increasingly important starting in the mid-
nineties.
These lecture notes are mainly pedagogical with only a few selected references. A systematic
and comprehensive presentation of the physics of fluid vesicles can be found in the review
article [1].
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Fig. 2: Sketch of a lipid bilayer membrane and phase contrast microscopy picture of a giant
vesicle (courtesy of H.-G. Döbereiner).

Fig. 3: Discocyte-stomatocyte transition. With increasing temperature, the up/down symmet-
ric discocyte (left shape) turns into a symmetry-broken stomatocyte. The contours below are
calculated based on the bilayer-couple model [2, 3].

2 Shapes

2.1 Physics of the curvature model

For a physical approach for understanding the factors which determine the variety of vesicle
shapes and their transformation we search for an appropriate (free) energy whose minimization
yields these shapes. For a symmetric membrane, the chemical composition and environment
of both monolayers is identical. Therefore, the flat conformation is locally the state of lowest
energy. For a closed configuration, which is necessarily non-flat, the selection of the correct
energy has to be guided by the essential physical properties of closed bilayer membranes.
Length-scale separation and curvature model: The bilayer is about 4 nm thick, a giant vesicle
is about 104 times larger. This separation of length-scales allows to describe the membrane as a
two-dimensional surface R(s1, s2) parametrized by two internal coordinates (s1, s2) embedded
in the three-dimensional space. Any such surface can locally be characterized by the two radii
of curvature R1 and R2 from which one forms the mean curvature, H ≡ (1/R1 + 1/R2)/2,
and the Gaussian curvature, K ≡ 1/R1R2, see Fig. 7. The detailed mathematics is recalled in
Appendix A. The basic assumption of the curvature model is that bending such a membrane
costs locally the energy [7, 8]

f ≡ (κ/2)(2H)2 + κGK, (1)

where κ and κG are the ordinary and the Gaussian bending rigidity, respectively. These material
parameters have dimension of energy (since f is an energy/area). For phospholipid membranes,
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Fig. 4: Prolate and pear-like shapes [2, 3].

Fig. 5: Starfish vesicles as observed experimentally (top) and modelled theoretically (bottom)
[4].

a typical value is 10−12 erg = 10−19 J.
Large edge energy and fixed topology: Any open edge of a membrane patch exposed to water
costs a large energy. This is the reason why free membrane patches do not exist. Likewise, the
topology of a vesicle does usually not change since this would imply to form transient edges.
Therefore, we have to consider only closed membrane configurations, i.e., vesicles, for which
the energy

Fκ ≡ (κ/2)

∮

dA(2H)2 (2)

is given by the integral of (1) over its closed surface. Due to the mathematical Gauss-Bonnet
theorem the integral of the second term of (1) depends only on the topology (i.e. number of
handles g) of a vesicle but not on its shape, i.e.

∮

KdA = 4π(1 − g). Therefore, this second
term can be discarded as long as we consider vesicles of fixed topology.
Fluidity, insolubility and incompressibility: Since the membrane is in the fluid state of matter, it
cannot withstand shear in its plane. Moreover, the solubility of the double chain phospholipids
is extremely low. Therefore, there is practically no exchange of material between membrane and
solution. This fact together with the quite small compressibility of the membrane implies that
for almost all vesicle phenomena the membrane can be considered as locally incompressible.
For a closed vesicle, the total area A is thus fixed.
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Fig. 6: Shapes of non-spherical topology. a) a non-axisymmetric torus, b) an axi-symmetric
circular torus, c) the “button” surface of genus 2 [5, 6].

Fig. 7: Local radii of curvature R1 and R2 and normal vector n of a membrane patch.

Osmotic control of volume: Experimentally, one controls in these systems often the osmotic
conditions of the external solution. Even if one works with “pure water”, there are necessarily
osmotically active impurities around. Since the membrane is permeable for water, the volume
changes up the point where practically no more osmotic pressure difference acts. The bend-
ing moments that can be derived from (2) are just too weak to balance any non-zero osmotic
pressure. Therefore, vesicle configurations must be determined at a prescribed volume V .

2.2 Phase diagram of a minimal model

We are now looking for the shapes which minimize the curvature energy (2) for given area A
and volume V . These constraints are added with Lagrange multipliers Σ and P to the energy
(2) which leads to

F ≡ Fκ + ΣA + PV. (3)

The minimization of (3) must be performed numerically. This is done by solving the Euler-
Lagrange-equations, δ1F = 0, in a suitable parametrization of an axisymmetric shape [9]. This
procedure leads to stationary shapes which are local minima and saddle points in the shape
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space, among which careful inspection of the energy diagrams allows to distinguish. The sta-
tionary shapes depend only on one parameter which is the reduced volume

v ≡ V/[(4π/3)(A/4π)3/2]. (4)

The value of the bending rigidity κ will not affect the result at this stage, since κ is the only
energy scale in the problem.
It turns out that there are three types or “branches” of local minima: prolates/dumbbells,
oblates/discocytes and cup-shaped stomatocytes, see Figs. 8,9. Obviously, this minimal model
captures important aspects of vesicle shapes since we obtain theoretically shapes found previ-
ously in the lab. However, something important is missing since this minimization does not
lead to pear-like shapes as shown in Fig. 4 or starfish vesicles as shown in Fig. 5. The very
observation of these shapes proves that the model described so far is incomplete.

Fig. 8: Shapes of minimal curvature energy Fκ for various values of the reduced volume v. The
shapes of lowest energy are prolate for v & 0.65, oblate for 0.65 & v & 0.59, and stomatocyte
for v . 0.59 [9].

Fig. 9: Curvature energy Fκ/8πκ of the stationary shapes [δ1F = 0] as a function of the
reduced volume v. D and Dsto denote the two discontinuous transitions shown in Fig. 8. The
further capital letters denote distinct points described in detail in [9].
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2.3 Refined curvature models

The missing ingredient in (2) is the fact that it is not possible to describe the membrane just as
a structure-less two dimensional surface. One key signature of its molecular architecture must
be retained and that is the bilayer feature [10, 11]. The two monolayers are tightly coupled but
the exchange of lipid molecules between them is slow compared to the experimental time-scale
of these observations. Therefore, the numbers N+ and N− of molecules in the outer and inner
monolayer, respectively, are conserved. The number difference N+ − N− leads to a prefered
area-difference

∆A0 ≡ (N+ − N−)a0 (5)

between the two layers. Here, a0 is the equilibrium area per lipid molecule. The actual area
difference, ∆A = A+ − A−, can be expressed as an integral over the mean curvature as

∆A = 2D

∮

dA H (6)

where D is the distance between the neutral surfaces of the two monolayers, i.e., roughly half the
bilayer thickness. If the area of each molecule was strictly conserved, ∆A would be conserved
too. This would lead to a third constraint on the total mean curvature

M ≡
∮

HdA. (7)

Such a model had become popular under the name of the bilayer couple model [11, 2]. Detailed
comparisons with experiments and a thorough theoretical analysis of bilayer bending finally
revealed that this hard constraint on ∆A must be softened [12]. The correct form of the bilayer
feature is therefore to add to Fκ an area difference elasticity,

FADE =
απκ

2D2A
(∆A − ∆A0)

2, (8)

where α is somewhat model dependent but close to 1.
Minimizing the total energy,

F ≡ Fκ + FADE , (9)

now leads indeed to pears, shapes and a multitude of starfish vesicles [12, 13, 4]. In this model,
the minimal shapes depend not just on the reduced volume v but on one more parameter

m̄0 ≡ ∆A0/2DR, (10)

which is basically a scaled “frozen-in” number difference of lipid molecules in the two layers.
The shapes of lowest energy can be arranged in a two-dimensional phase diagram [12, 13], see
Fig. 10. As one changes temperature or the osmotic conditions, the parameters v and m̄0 change
due to thermal expansion of the area [9]. Thus, a trajectory in this phase diagram cuts across the
different region of stability of the different shapes. Transitions from one shape to another, say
from prolate to pear, can be abrupt (i.e., discontinuous, or first order) or smooth (i.e. continuous
or second order). All experiments performed so far on the shapes of such vesicles and their
transitions seem to be quantitatively compatible with this theoretical model.
The discussion so far has been confined to membranes which are symmetric with respect to
both the chemical composition of the two leaflets of the bilayer and the liquid environment.
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Fig. 10: Phase diagram of the ADE model. Shown are the shapes of lowest energy as a function
of the reduced volume v and the scaled prefered area-difference m̄0 for α = 1.4. The capital
letters denote shape transitions, limiting lines and special points. The region of stable starfish
vesicles lies at smaller v [13] .

Originally, Helfrich suggested a spontaneous curvature model in which (2H) in (2) is replaced
by (2H − C0) [8, 14]. In this case, C0 is the curvature that a free membrane patch cut from a
vesicle in a Gedanken-experiment would acquire spontaneously. One can show that minimizing
such a modified energy (2) leads to the same multitude of shapes as minimizing (9) although
with different stability properties [12, 15]. Even for a vesicle under such asymmetric conditions
the second energy term in (9) must be retained if its two leaflets do not exchange molecules.
In the latter case, the spontaneous curvature and the area difference term can then be combined
into an “effective” spontaneous curvature.
Minimization of the curvature energy happens at fixed topology, so far spherical topology. For
vesicles of higher topology as those shown in Fig. 6, similar phase diagrams have been calcu-
lated [16, 17]. For surfaces with genus g ≥ 2 an interesting new phenomenon occurs. The
fact that Fκ in (2) is invariant under conformal transformation of the three-dimensional space,
leads to a continuous degeneracy of the shape of minimal energy at fixed v and m̄0. This phe-
nomenon, called conformal diffusion, has been first predicted theoretically [17] and later been
verified experimentally [4].

2.4 Thermal fluctuations

The vesicle shapes obtained by minimizing the appropriate curvature energy subject to the ge-
ometric constraints formally correspond to solving a zero temperature problem. Video mi-
croscopy reveals that these shapes typically exhibit visible thermal fluctuations [18]. How can
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these fluctuations be described?
It is instructive to start from a planar membrane. The local position of such a membrane with
respect to the mean plane can be parametrized by a height variable h(x, y). The energy (2) then
becomes

Fκ =
κ

2

∫

dxdy(∇2h)2 =
κ

2

∫

d2q

(2π)2
q4hqh

∗

q (11)

where the Fourier transformation is defined as

h(x) ≡
∫

d2q

(2π)2
hqe

iqx . (12)

Invoking the equipartition theorem [19] then tells us the mean amplitudes at temperature T

< |hq|2 >=
kBT

κq4
, (13)

where < ... > is the thermal expectation value taken with the Boltzmann weight, exp(−Fκ/kBT ).
In principle, one could attempt to calculate the fluctuations around any of the zero temperature
(T = 0) shapes using a similar approach. In practice, the differential geometry involved is tricky
and taking care of the geometrical constraints is not entirely trivial. The latter problem can be
solved by introducing an effective tension and pressure difference whose numerical value are
given by the Lagrange multiplier Σ and P , used to implement the area and volume constraints,
respectively [15]. The former must be attacked numerically which is somewhat cumbersome.
So far, only a few attempts have been made to calculate such fluctuation spectra around non-
trivial (T = 0) shapes [20, 21, 22]. The notable exception are quasi-spherical vesicles from
whose fluctuation spectrum the value of the bending rigidity can be deduced by comparing data
to theory, for relatively recent work, see e.g. [23, 24].
In a very recent development, fluctuation around non-spherical shapes can be simulated numer-
ically and then be compared to experimental spectra. This technique allows a precise determi-
nation of membrane parameters like bending rigidity and spontaneous curvature [25].

3 Adhesion

3.1 Two length scales

From the point of view of having a well-defined system, an isolated vesicle freely floating in
solution is almost perfect. For interesting applications or a higher level in complexity, inter-
action of the vesicle with other objects should be considered. The conceptually simplest case
corresponds to adhesion of a vesicle to a rigid substrate. For this case, a comprehensive set
of experimental data can be obtained using reflection interference microscopy [26, 27]. This
technique allows not only to study the gross features of a bound vesicle such as its contour
radius or the size of the adhesion disc but also the fluctuation spectrum of its bound part. Such
experiments show clearly that the problem of a vesicle adhering to a substrate has two comple-
mentary aspects, a macroscopic one (overall shape) and a mesoscopic one (fluctuation spectrum
in the vicinity of the substrate), see Fig. 11. Recognizing in a first step this distinction, is key
for a successful theoretical modeling of this problem. In a second step, the two aspects must be
reconciled self-consistently.
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Fig. 11: Adhesion of vesicles: Macroscopic view with contact area A∗ and contact curvature
1/R∗

1 and mesoscopic view with the bound part fluctuating in a potential V (l) which has a
minimum typically ' 10 nm above the substrate.

3.2 Macroscopic model

From the macroscopic perspective, a minimal model for adhesion of a vesicle to a substrate
consists in adding an adhesion energy

Fa ≡ −WA∗ (14)

to the bending energy (2) [28]. Here, W is the contact potential and A∗ the size of the adhesion
patch with which the vesicle adheres to the substrate. Such a contact potential enters the bound-
ary condition at the point of contact. First, the contact angle is necessarily π since any sharp
bend would have an infinite curvature energy. This implies that the membrane is curved only in
one direction and 1/R∗

2 = 0 along the line of contact. Second, the contact curvature obeys

1/R∗

1 = (2W/κ)1/2 , (15)

which follows from minimizing with respect to the area of contact [28]. This boundary condi-
tion, which does not depend on the area of the vesicle, holds for all variants of the curvature
model. Depending on both the size of the vesicle,

R ≡ (A/4π)1/2 , (16)

and the strength of the adhesion potential W , adhesion can either be “weak” or “strong”. The
crucial quantity is the scaled strength of the adhesion potential

w ≡ WR2/κ . (17)

Typical bound shapes as those shown in Fig. 12 demonstrate that there are two regimes.

Weak adhesion (w of order 1): It turns out, somewhat surprisingly, that one needs a threshold
value wc for adhesion to occur. If the adhesion strength is too small, the possible gain in ad-
hesion energy is smaller that the cost in deforming its shape so that the vesicle will not adhere
even in the presence of the weakly attractive substrate [28]. The specific value of wc depends
on the reduced volume but is of order 1, see Fig. 13 [29]. For w > wc, the vesicle is bound. Its
contact area A∗ increases with increasing strength of the potential W .



Membranes D3.11

Fig. 12: Calculated shapes of bound vesicles. (Left): regime of weak adhesion; (right): regime
of strong adhesion. The latter shape is almost spherical cap-like with an effective contact angle
Ψeff [28].

Strong adhesion (w >> 1): Physically, in this regime, the bending energy becomes irrelevant
and the shape is determined solely by the desire to maximize the contact area A∗ for given total
area and enclosed volume. The optimal shape then is a spherical cap with an effective contact
angle Ψeff(v) determined by the geometrical constraints, see Fig. 12. The explicit relation
Ψeff(v) is given in [30]. The limiting cases are Ψeff = π for a sphere (v = 1) and Ψeff = 0 for
a flat pancake (v = 0). Interestingly, this effective contact angle also obeys a Young equation
[28],

W = Σ(1 + cos Ψeff). (18)

In contrast to adhesion of liquid droplets where Σ would be the surface tension, for vesicle
adhesion Σ is not an independent quantity but rather given by the (numerical) value of the
Lagrange multiplier used to implement the area constraint. As (18) shows, Σ is a function of
both the reduced volume (through Ψeff(v)) and of the adhesion strength W .

Fig. 13: Semiquantitative phase diagram for adhering vesicles as a function of adhesion en-
ergy w and reduced volume v. The thick lines denote the curvature driven adhesion transition
wc(v). Depending on the reduced volume v, bound and free shapes can be prolate, oblate or
stomatocyte-like [29].
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Experimentally, the difference between strong and weak adhesion has clearly been seen. With
light microscopy [31], the mutual interaction of vesicles has been studied and large rounded
contact regions corresponding to weak adhesion were found. Spherical cap-like configurations
have been seen in micro-pipet experiments [32] as well as in freeze-fracture electron microscopy
for smaller vesicles [33].

From the macroscopic point of view, the problem of a vesicle adhering to a substrate is thus
solved if we know the strength of the contact potential W which must be extracted from a more
mesoscopic approach.

3.3 Mesoscopic description

The bound part of a closed vesicle is typically several nanometers away from the substrate and
still shows thermal fluctuations [27]. These conditions require that we refine our modeling by
paying due attention to the mesoscopic interactions between membrane and substrate. As re-
viewed in [34], various forces are involved in this interaction such as van der Waals interaction,
electrostatic contributions in the case of charged membranes, and short range repulsive forces
such as the hydration force or protrusion forces. All these direct forces can be combined into an
effective potential Vd(l). This quantity gives the energy of a (fluctuationless) planar membrane
at a distance l from the substrate. Typically Vd(l) increases dramatically for small l and vanishes
for large l. In between, there are either one or two minima. If these direct forces were the full
story, we could take as the effective adhesion strength of the macroscopic approach the value
of the direct potential at the minimum l0, i.e. W = −Vd(l0). However, the situation is more
complex due to thermal fluctuations.

The presence of the substrate confines its fluctuations [35]. As derived in Appendix B, this
effect can be described by a steric or fluctuation potential [30]

Vf(Σ; l) =

(

6b2(kBT )2

κl2

) (

y2

sinh2 y

)

with y ≡ (Σ/bT )1/2l/2 and b ' 1/2π. (19)

This potential expresses the increase in free energy due to a decreasing entropy for thermal
fluctuations with increasing confinement. It diverges as 1/l2 for l → 0 and vanishes for l → ∞.

Within a superposition approach, the fluctuation potential Vf(Σ; l) should be added to the direct
potential Vd(l) to form the total potential V (l) ≡ Vd(l)+Vf (Σ; l). The energy of the bound part
of the vesicle, which is at a local distance l(x, y) from the substrate, is then given by

Fa =

∫

dA
{κ

2
(∇2l)2 + V (l) + Σ

}

≈ 1

2

∫

d2q

(2π)2

(

κq4 + (Σ − W )q2 + V ′′(l0)
)

|hq|2. (20)

In the first equality we have to include Σ from the area constraint. The second equality follows
after expanding for small fluctuations,

h(x, y) ≡ l(x, y) − l0, (21)

around the minimum at l0. The area element dA becomes

dA ≈ dxdy(1 + (∇h)2/2) (22)
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and for the potential V (l) an expansion reads

V (l) ≈ −W + V ′′(l0)h
2/2. (23)

The prefactor of the q2 term in (20) is the effective tension

Σ̄ ≡ (Σ − W ) = −W
cos Ψeff

1 + cos Ψeff

, (24)

which carries two contributions. The first arises from the area constraint, which acts like an
external pulling force at the bound part of the membrane. The second one describes the fact
that a fluctuating membrane exposes more area to the attractive potential minimum [36]. The
final equality, which arises from using (18), shows that for strong adhesion there is a universal
relation between the effective adhesion energy W and the effective tension Σ̄ acting on the
fluctuations of the bound part. This relation depends only on the reduced volume v which
determines Ψeff . This relation states in particular that the effective tension becomes negative for
those vesicles with a relatively small reduced volume for which Ψeff < π/2. Such a negative
tension should show up in the measurable spectrum of fluctuations of the bound part [27], which
can be obtained using equipartition on (20) as

< |hq|2 >=
kBT

κq4 + Σ̄q2 + V ′′(l0)
. (25)

The final step in a self-consistent description consists in determining not only the ratio between
the tension Σ and the depth of the adhesion potential W as given by (24) but also their individual
value. Since W corresponds to the depth of the total potential at its minimum l0, one has

W = −[Vd(l0) + Vf(Σ; l0)]. (26)

With this equation, the problem of vesicle adhesion taking into account steric repulsion is closed
and solvable for any given form of the direct potential Vd(l). For a specific example, see [30],
where the distinction between Σ and Σ̄ was not yet made. This refinement is irrelevant for large
reduced volume or tense vesicles which were the focus in [30] but becomes important for small
reduced volume where this refinement [36] predicts a negative Σ̄.

3.4 Unbinding transition

Two mechanisms for an adhesion or unbinding transition for vesicles should be distinguished.
Ignoring fluctuations, the competition between adhesion energy and bending energy predicts
a scale dependent adhesion transition at wc(v). For given W , this relation implies that large
vesicles with R > Rc ≡ (wcκ/W )1/2 are predicted to adhere while smaller ones are free [28].
Physically, the large ones can take advantage of the adhesion energy without having to pay too
much in bending.
The second mechanism happens via fluctuations. Even if the direct potential Vd has a minimum
at l0 with Vd(l0) < 0, thermal fluctuations can be so strong that the membrane prefers to be
unbound. This unbinding transition has been studied first for free planar tensionless membranes
[37, 38]. The theory described above shows that a similar effect also holds for the vesicles
except for quite tense ones [30]. In the latter case the fluctuations may be restricted so much
that such a vesicle is still bound even though an open membrane patch (with Σ = 0) would
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unbind due to fluctuations. This regime corresponds to genuine tension-induced adhesion [39].
The crossover between the two different mechanisms can be estimated to happen at a length-
scale in the 100 nm range [28].

3.5 Gravity

A particular type of adhesion arises from gravitational effects often used in the laboratory to
stabilize vesicles at the bottom of a measuring chamber. If a vesicle is filled with a fluid slightly
denser than the surrounding aqueous solution, it will sink to the substrate. Even without an
explicit adhesion energy, this geometrical confinement leads to shape changes [40]. The phase
diagram is shown in Fig. 14 as a function of the reduced volume v and the (dimensionless)
gravitational interaction

g ≡ g0∆ρR4/κ, (27)

where g0 ' 9.81 m/s2 and ∆ρ is the density difference between the aqueous solutions inside
and outside the vesicle.

Fig. 14: Phase diagram including gravity as a function of reduced volume v and gravitational
parameter g. In the grey area, the minimal shape is a non-axisymmetric prolate, for larger g
an axisymmetric oblate. The transition between the prolate and the oblate is continuous along
g∗

cont and discontinuous (with associated spinodal) along gdis [40].

4 Dynamics

4.1 Classification and dissipative mechanisms

Characteristic for giant vesicles is their slow dynamics visible in the microscope. The typical
time-scale for shape changes on the micron scale lies in the range of a second which makes
vesicles a perfect system to study dynamical aspects in real space directly. For a classifica-
tion of vesicle dynamics, one has to distinguish dynamics in equilibrium from non-equilibrium
phenomena.
Equilibrium dynamics of vesicles comprises the dynamical fluctuations around locally stable
mean shapes. Non-equilibrium dynamics is the more challenging and less well explored regime.
One should distinguish two classes. First, there is relaxation into a new equilibrium after a
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parameter change. This class comprises the decay of a metastable shape such, e.g., as the
budding process induced by raising the temperature [3, 41]. The driving force in this case is the
curvature energy which favors a different shape at the new external conditions. Conceptually
related is the spectacular pearling instability of cylindrical vesicles, which develops upon action
of optical tweezers [42]. In this case, the laser generates a tension for which a homogeneous
cylinder is no longer a stable configuration. The second class of nonequilibrium behavior refers
to genuine non-equilibrium states of vesicles induced by external fields such as hydrodynamic
flow as described below.
Dynamics in the micron world of vesicles is overdamped, i.e. inertial effects can safely be
ignored [43]. This realm is often somewhat counter-intuitive to our experience of fluid phe-
nomena shaped mostly by the so-called large Reynolds number regime where inertia matters.
For example, in the micron world, motion is reversible and objects come to rest right after the
driving forces cease to act. Driving forces for vesicles arise from bending energy and from
external fields such as optical tweezers or hydrodynamic flow. Dissipation (or “friction”) takes
place both in the surrounding liquid and in the membrane, in principle. For giant vesicles of
micron size, the dominant dissipation is viscous dissipation in the embedding fluid [44], which
requires a full treatment of the hydrodynamics of this fluid.
Dissipation in the membrane can be classified into three phenomena: Drag between the two
monolayers [45], shear viscosity within each layer and permeation through the membrane. Cal-
culation of the relaxation spectra of bending fluctuations involving the first two mechanisms
show that on scales of microns and larger, hydrodynamic dissipation is dominant [46]. In
the submicron range, friction between the layers becomes relevant. On even smaller scales
of several tenths of nanometers, shear viscosity within each layer should be included. Finally,
permeation through the membrane seems to be irrelevant on all length-scales with the possible
exception of membranes in the vicinity of a substrate [47]. Based on this hierarchy of dissipa-
tive mechanisms, for giant vesicles it is often permissible to ignore all but viscous dissipation
in the surrounding liquid, as we will do in the following.

4.2 Equation of motion

We now derive the equation of motion for a fluid membrane embedded in a viscous liquid [48].
From a conceptual point of view, it is best to start with the Navier-Stokes equation for the
surrounding incompressible liquid given by

ρ(∂tv + v∇v) = −∇p + η∇2
v + f(r) (28)

∇v = 0 (29)

where v(r) is the 3-d velocity field of the liquid with density ρ. p(r) is the local pressure which
is basically determined by the incompressibility condition (29). η is the shear viscosity of the
liquid (with η ' 10−3 Js/m3 for water at room temperature), and f(r) is the force density acting
on the liquid. Fortunately, we don’t have to deal with the full non-linear Navier-Stokes equation
because the left-hand side (lhs) of equation (28), the inertia and connective terms, is much
smaller than the right-hand side (rhs) for typical membrane dynamics. This can be understood
by defining the Reynolds number

Re ≡
(

ρvtyp

Ttyp

)

/

(

ηvtyp

L2
typ

)

=
ρL2

typ

ηTtyp

(30)



D3.16 U. Seifert

as the ratio between the lhs and the rhs. Here, vtyp, Ltyp and Ttyp are typical velocities, length-
scales and time-scales. Choosing ρ = 103 Js2 / m4 , Ltyp = 1µm, η = 10−3 Js/m3 we get
Re = 10−6 for Ttyp = 1 s and Re = 10−3 for Ttyp = 10−3s. So on time-scales accessible to
video-microscopy, the Reynolds number Re is small and the lhs of (28) can be neglected. This
defines the regime of Stokes-flow governed by

∇p − η∇2
v = f(r)

∇v = 0. (31)

The general solution of these inhomogeneous linear equations is given by the super-position of
a solution of the homogeneous equation, vex(r), which is typically the externally imposed flow
field, and a special solution

v
ind(r) =

∫

dr′O(r, r′)f(r′), (32)

of the inhomogeneous equation. The Green’s function for (31) is called the Oseen-tensor
O(r, r′). As shown in Appendix C, for infinite flow, the Oseen tensor O(r, r′) has Cartesian
matrix elements

Oαβ(r, r′) ≡ 1

8πη|r− r′|

[

δαβ +
(rα − r′α)(rβ − r′β)

|r− r′|2
]

. (33)

Thus, the hydrodynamics mediates a long-range interaction (∼ 1/|r − r
′|) between the force f

acting at r′ and the velocity v induced at r. The total velocity field becomes

v(r) = v
ex(r) + v

ind(r). (34)

Such a simple superposition is possible since the Stokes equation is linear due to the absence of
the convective term.

R(s, t)

v(r, t)

s1

s2
f

r

Fig. 15: Sketch of the hydrodynamic set-up: The membrane at r
′ = R(s1, s2, t) exerts a force

f(r′) onto the liquid which affects the velocity v(r).

The force density f(r′) arises from both the embedded membrane and from boundary conditions
at confining surfaces, see Fig. 15. If the membrane is locally in a non-equilibrium configura-
tion, it wants to change its shape accordingly which acts as a force on the liquid. The formal
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expression of this effect is

f(r′) ≡ −
∫

ds1ds2

√
g

(

1√
g

δF

δR

)

δ(r′ − R(s1, s2)). (35)

This 3-d force density is localized along the two-dimensional membrane as expressed by the
δ-function and the integration over the membrane surface. The driving force arises from the
variational derivative (virtual displacement) of the appropriate energy F . In a minimal model

F = Fκ + FΣ, (36)

where Fκ is the curvature energy (2). The second term

FΣ ≡
∮

dA Σ(s1, s2) (37)

is necessary in the dynamics to ensure local area conservation as discussed below. Explicitly,
the force density then reads

(

1√
g

δF

δR

)

=
(

−2ΣH + κ[(2H)(2H2 − 2K) + 2∆H]
)

n − gij
Ri∂jΣ. (38)

Here,
∆ ≡ (1/

√
g)∂i(g

ij√g∂j) = gij∂i∂j. (39)

is the Laplace–Beltrami operator on the surface. The normal part of (38) [49] corresponds
to the stationarity condition [δ1Fκ = 0] discussed in Section 2. The tangential part arises
from inhomogeneities in the surface tension Σ(s1, s2) which will be needed to ensure local
incompressibility of the induced flow.

For given forces f(r′) we know through (32) and (33) the velocity field v(r) anywhere in the
liquid. Hence, we know v(r) particularly at the location of the membrane R(s1, s2; t) (where we
make the time-dependence of the configuration explicit). Since the membrane is impermeable
to water flow, the normal velocity of the fluid at the membrane pushes along the membrane and
leads to a shape change. Tangential motion of the fluid along the membrane induces lipid flow
within the membrane. As boundary conditions for this tangential flow one uses so-called non-
slip boundary conditions for which the tangential velocity of the liquid and the induced lipid
flow in the membrane are equal. Therefore, the velocity field leads to an equation of motion for
the membrane as

∂tR(s1, s2, t) = v(R(s1, s2, t)) = vex(R(s1, s2, t)) + v
ind(R(s1, s2, t)). (40)

This deterministic equation of motion includes both, normal motion that signifies a shape
change of the membrane, and tangential motion that corresponds to lipid flow within the mem-
brane. The so far unknown local tension Σ(s1, s2, t) is determined by requiring that the mem-
brane flow induced by this equation obeys local incompressibility. Thus, we must demand that
the surface element does not change,

∂t
√

g = 0, (41)

which implies explicitly
gij

Ri∂j(∂tR) = 0. (42)
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Upon insertion into the equation of motion (40) with (35) and (32), the condition (42) becomes
a partial differential equation for the unknown tension Σ(s1, s2, t).
Equations (40) and (42) yield a deterministic evolution equation for a membrane configuration
under the action of bending energy and hydrodynamics [48]. For any given initial membrane
configuration, the solution to these equations will run into the next dynamically accessible local
minimum of bending energy. In general, these equations must be solved numerically.

4.3 Equilibrium dynamics

For small perturbations around highly symmetric membrane configuration, the above scheme
can be solved analytically. This allows the determination of relaxation times for thermal fluctu-
ations in equilibrium. The simplest case is a planar membrane for which dynamical fluctuation
can be calculated as follows. The time-dependent membrane configuration is written in Monge
representation as

R(x, y, t) =





x

y

h(x, y, t)



 (43)

If an initial displacement h(x, y, 0) = hqe
iqr with r = (x, y) is put into the equation of motion

(40) with (vex = 0) one finds after some calculation a relaxation behaviour

h(x, y, t) = h(x, y, 0)e−γqt (44)

with γq = κq3/η, first derived in [44] slightly differently. According to the usual fluctuation-
dissipation relation [19], the dynamical correlation functions follow as

< hq(t)h
∗

q(0) >=< |hq|2 > e−γqt, (45)

with < |hq|2 >=< hq(0)h∗

q(0) > given by (13). In a quasi-spherical geometry, a similar
calculation using spherical harmonics yields relaxation rates γl,m which can be compared to
experiments, for some of the latest studies see [50, 51].
For non-spherical shapes, dynamical equilibrium fluctuations have been investigated for prolate
shapes in the vicinity of the budding transition [52]. Another particularly interesting example
of dynamical fluctuations has been observed at the prolate-oblate transition. Since the activa-
tion energy between the prolate and the oblate shapes is just a few kBT , occasionally thermal
fluctuations are large enough to drive the vesicle into the other minimum. This system thus
constitutes one of the few examples showing a thermally induced macroscopic bistability [53].

4.4 Vesicle in shear flow

A vesicle in infinite shear flow was the first case for which the equation of motion derived in
4.2 was applied numerically [54]. An external shear flow with shear rate γ̇ in x-direction

v
ex(r) = γ̇yex = γ̇[(y/2)ex + (x/2)ey)] − (γ̇/2)ez × r ≡ v

el(r) + v
rot(r) (46)

can be decomposed into an elongational component vel(r) which is tilted at 45◦ and a rotational
component vrot(r), see Fig. 16.
Fig. 17 shows the result of the numerical implementation of the dynamical equations. An initial
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= +

Fig. 16: Decomposition of shear flow into an elongational and a rotational component.

Fig. 17: Evolution of an initially oblate vesicle under shear flow. The arrows denote the local
velocity [54].

equilibrium shape is at time t = 0 exposed to shear flow. The shape begins to elongate which
immediately breaks the initial axi-symmetry. It tilts. After some time it acquires a stationary
tilted elongated shape around which the membrane perpetually revolves in a so-called tank-
treading motion. The qualitative features of this dynamically induced shape transformation can
be understood on the basis of the decomposition (46). The elongational component leads to the
tilt, whereas the rotational component leads to the tank-treading motion.
The quantitative analysis [54] shows that the tilt θ depends on the reduced volume (with θ →
π/4) for v → 1 as expected from the decomposition (46). The tilt is almost independent of
shear rate γ̇. This behaviour cannot persist to γ̇ → 0 since one would expect to recover the
equilibrium shape in this limit, which is however, difficult to reach numerically. The tank-
treading frequency ω̄ (averaged over the shape) increases with reduced volume approaching
γ̇/2 for v → 1 as expected.
Experimentally, a vesicle in shear flow has been studied in a slightly different regime [55]. The
vesicle was initially spherical with thermal fluctuations. With increasing shear flow, some area
stored in these fluctuations is “pulled out” and the shape elongates. With increasing shear rate
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this elongation saturates since the total area is conserved. The tilt is initially 45◦ and becomes
smaller with increasing shear rate. Since the algorithm described above does not include the
effect of fluctuations (yet) a direct comparison is not possible. Analytically, however, one can
include thermal fluctuation as long as one keeps the quasi-spherical approximation. Details of
such a calculation using Langevin equations for the shape hydrodynamics [56] are given in [48].

4.5 Dynamically induced unbinding

For vesicles interacting with a substrate, shear flow can lead to a dynamically induced unbinding
or detachment transition as observed in two recent experiments [57, 58], see Fig. 18. For small
shear rate γ̇, the vesicle tanktreads along the substrate. At a critical shear rate γ̇c, the vesicle
starts to detach from the substrate.
A lift force occurs because of a symmetry breaking. The Stokes equation (31) are time-reversal
invariant. This implies that a rigid sphere (or a tense vesicle) in shear flow at a certain height
above a substrate will neither experience lift nor a force towards the substrate but rather translate
at constant height. For a non-spherical shape, however, the fore-aft symmetry is broken and lift
can occur.
If the vesicle is filled with a denser fluid than the environment, it hoovers at a distance h above
the substrate. In such a stationary state the gravitational force will be compensated by the lift
force. In the absence of a density difference between interior and exterior, the lift force leads
the vesicle continuously further away from the substrate.

Fig. 18: Experimental study of shear-flow induced unbinding of a vesicle from a substrate; (a):
rest state; (b-d): vesicle elongates and tilts; (e): a gap develops between vesicle and substrate
[58].

Fig. 19: Theoretical study of shear-flow induced unbinding in the same geometry [59].

The theoretical work on this effect can be roughly classified as follows. The simpler two-
dimensional problem (a semiflexible ring polymer above a one-dimensional line substrate) has
been studied in [60]. A perturbative approach is possible at large separation h � R for el-
lipsoidal shapes. It leads to a lift force ∼ γ̇/h2 [61]. In three dimensions, a simple scaling



Membranes D3.21

approach has given a rough picture of this unbinding transition in the regime of strong adhesion
[62].
We now describe the results of a numerical study of the full three-dimensional problem [59].
Such a numerical analysis is possible only, since the Oseen-tensor for a half-space geometry
is known exactly [63] as reproduced in footnote 22 of [59]. To retrieve the bare contribution
of hydrodynamics to the lift force, adhesion and gravity were first turned off. The vesicle is
initially at a small distance from the wall and then shear flow is imposed. In Fig. 19, a typical
sequence of “snapshots” are shown. The initially oblate-like shape tilts, elongates, becomes
prolate and finally takes off. The steady tilt of the vesicle plays the leading role in breaking the
fore–aft symmetry of the vesicle with respect to shear flow. Since the tilt is almost independent
of shear rate, the excess pressure in the space between the vesicle and the wall causes a lift force
which is proportional to shear rate γ̇. Additional effects due to the deformation are of O(γ̇2).
When gravity is included by implementing a density difference between the fluids inside and
outside the vesicle, the vesicle indeed hovers at a constant distance from the substrate . Finally,
for vesicles adhering to a substrate by the influence of a potential V (l), a critical shear rate was
found above which the vesicle unbinds from the wall. This critical shear rate is roughly linear
in the adhesion strength w [59].

5 Perspectives

In the three main sections of this lecture, I described the analysis of the simplest model systems
which show the phenomenon we wanted to understand, like the different shapes, adhesion and
dynamics in hydrodynamic flow. By focusing on the simplest cases, the parameter space is small
enough to allow for a comprehensive study. These studies prepared the ground for investigating
more complex systems. Many applications or a more detailed modelling of biological systems
require that some of the simplifying assumptions must be relaxed and further ramifications be
introduced. These more complex models necessarily contain more parameters which makes a
comprehensive study more difficult and often not even desirable. In this concluding section, I
will mention a few such perspectives with some recent references. The interested reader will
easily find more literature by searching the various data bases via the internet.
Vesicle membranes need not consist of only one sort of lipid. Lipid mixtures on curved shapes
allow for a coupling between local composition and curvature as it has been shown recently in
a beautiful experimental study [64]. Shape transformations induced by light or by changing the
chemical composition are reviewed in [65]. Fusion of vesicles has recently been visualized us-
ing microfluoresence spectroscopy [66]. A quantitative modelling of such topological changes
will require a more microscopic approach.
Adhesion needs not to be on a laterally homogeneous substrate as described here. Technologi-
cally interesting substrates may be chemically or morphologically structured as the one recently
been used in the context of adhesion on silicon chips [67]. Adhesion can be counteracted by
pulling with localized point forces which gives rise to force-induced detachment [68].
Dynamics is a huge field where we described the Oseen-tensor approach in some detail. A
complimentary theoretical technique uses a phase field for studying vesicles in shear flow [69].
Other geometries like flow of vesicles in a cylinder or in a porous network are important for
certain applications. Hydrodynamic flow also introduces long range interactions between two
or several vesicles. For denser systems like vesicle suspensions, macroscopic rheological pa-
rameters should be determined on the basis of such mesoscopic studies.
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One of the original motivations for studying vesicles as mentioned in the introduction was the
quest for understanding the shapes and the elastic behaviour of red-blood cells. For a successful
modelling, the polymeric spectrin network which endowes these cells with shear elasticity must
be included. Shape transformations of these cells [70] and their fluctuations [71] have recently
indeed been described by the interplay of the various elasticities of this compound membrane.
For other cells like leucocytes one wants to understand their adhesion to capillary walls in blood
flow. Quite generally, biological adhesion is dominated by specific receptor/ligand molecules
rather than by an unspecific adhesion due to physical interactions described here. How this
specific interaction competes with hydrodynamically induced forces in cell detachment is a
fascinating and open problem [72].
A general characteristics of cells is that they are genuine non-equilibrium systems. While we
have discussed non-equilibrium aspects caused by hydrodynamic flow, important modifications
also arise from the fact that in biological systems active processes happen which transform
chemical energy into mechanical motion. The physics of such active membranes is reviewed in
[73].
These few and necessarily pretty scattered remarks on some of the perspectives of the work
described in this lecture demonstrate that vesicle research is not only a vivid topic in statis-
tical physics. In retrospect in a couple of decades, this research may well be seen as having
contributed first steps towards a quantitative understanding of cell biology. Within such a vi-
sion, the canon of physics, shaped in the twentieth century by fields like elementary particle
physics, nuclear physics, atomic physics and solid state physics, will include not only soft mat-
ter physics, which is presently being established, but may even comprise a field ultimately called
“cell physics”.

Appendices

A Differential geometry for vesicles

The membrane configuration R(s1, s2), parametrized by internal coordinates (s1, s2), is embed-
ded in the three dimensional space. This space will be parametrized by Cartesian (x, y, z) or
spherical (r, θ, φ) coordinates as r = xαeα = rer where α = x, y, z. Summation over double
indices is implied throughout the article. There are two tangential vectors

Ri ≡ ∂iR(s1, s2) for i = s1, s2, (47)

from which one obtains the metric tensor

gij ≡ Ri · Rj. (48)

Its determinant, g ≡ det(gij), yields the area element

dA =
√

g ds1ds2. (49)

The normal vector, n(s1, s2), is given by

n =
R1 × R2

|R1 × R2|
. (50)
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Finally, the mean and the Gaussian curvature follow from the curvature tensor

hij ≡ (∂i∂jR) · n (51)

as

H ≡ 1

2
hi

i (52)

and
K ≡ det(hi

j), (53)

where hi
j ≡ gikhkj and gij are the matrix elements of the matrix inverse of (gij). Following the

convention used in differential geometry, a sphere with the usual spherical coordinates (s1 =
θ, s2 = φ) has H < 0.

B Steric of fluctuation potential

In this appendix, the derivation of the steric of fluctuation potential Vf(l) for a membrane under
tension is sketched according to [30]. For a tensionless membrane, Vf(l) has been derived much
earlier [35].
We consider a membrane pushed by a linear potential +pl towards a rigid wall at l = 0. Its free
energy functional becomes

F =

∫

dA

{

κ

2
(∇2l)2 +

Σ

2
(∇l)2 + pl

}

'
∫

dA

{

κ

2
(∇2l)2 +

Σ

2
(∇l)2 + pl + Vf(l)

}

(54)

with configurations restricted to l(r) > 0. For the second step, we have assumed that this
geometrical constraint can be replaced by a smooth unknown repulsive potential Vf(l). Expand-
ing around the minimum l0 with p = −V ′

f (l0) and h(r) ≡ l(r) − l0, we get after a Fourier
transformation

F =
1

2

∫

d2q

(2π)2

(

κq4 + Σq2 + V ′′

f (l)
)

|hq|2 (55)

where we dropped the index 0 at l0 again. On small length scales, q > 1/ξ, the harmonic energy
(55) is dominated by the elastic part κq4 +Σq2; on large scales q < 1/ξ the fluctuations feel the
steric potential. The correlation length ξ can be defined precisely by

κ/ξ4 + Σ/ξ2 = V ′′

f (l), (56)

where ξ depends implicitly on l (the mean distance from the substrate), or l on ξ.
The confinement leads to a free energy density f = b(kT )/ξ2. This form basically follows
from a dimensional analysis, assuming that ξ is the only relevant length scale. The numerical
prefactor b is of order 1. In the present context, f corresponds to Vf(l), which implies with (56)
the non-linear differential equation

κ

(

Vf(l)

bkT

)2

+ Σ

(

Vf(l)

bkT

)

= V ′′

f (l) (57)

for the fluctuation potential. The unique solution of this differential equation which diverges for
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l → 0 and vanishes for l → ∞, is

Vf(Σ; l) =

(

6b2(kBT )2

κl2

) (

y2

sinh2 y

)

with y ≡ (Σ/bT )1/2l/2, (58)

given in eq. (19).
For tensionless membranes, where Σ = 0, the second bracket becomes unity. This form cor-
responds to the well-known Helfrich potential [35]. The numerical prefactor 6b2 ' 0.1 can be
estimated by Monte-Carlo simulations [34]. In the presence of a lateral tension Σ, which pulls
at the membrane, the power law decay of the first bracket is cut-off by the second factor at a
length-scale lΣ ≡ (4bT/Σ)1/2 [34]. The best choice for b in this case is b = 1/2π.

C The Oseen-tensor

In this appendix, we sketch the derivation of the Oseen-tensor according to [56]. The Stokes
equations (31) read after Fourier transformation for all quantities with eikr

ikp + ηk2
v = f

kv = 0 (59)

Multiplying the first one with −ik and using the second leads to the pressure

p = − ik : f

k2
(60)

being uniquely determined by the force. Here, : signifies the dyadic product [(k : f)αβ = kαfβ].
The first equation of (59) is now solved by

v =
1

ηk2

(

1 − k : k

k2

)

f (61)

In real space, this relation becomes

v(r) =

∫

O(r, r′)f(r′)d3r′ (62)

with the Oseen-tensor

O(r, r′) ≡ O(ρ) ≡ 1

η

∫

d3k

(2π)3

1

k2

(

1 − k : k

k2

)

e−ikρ (63)

Since the rhs is a tensor which depends only on ρ ≡ |ρ| with ρ ≡ r − r
′, its Cartesian matrix

elements can be written as
Oαβ(ρ) = Aδαβ + Bραρβ/ρ2 (64)

The scalars A and B are determined from the two equations

Oαα = 3A + B ( summation over α understood ), (65)

Oαβραρβ/ρ2 = A + B, (66)
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i. e.

3A + B =
1

(2π)3

∫

d3k
2

ηk2
e−ikρ =

1

2πηρ
(67)

and

A + B =
1

(2π)3

∫

d3k
(1 − (kρ)2/k2ρ2)e−ikρ

ηk2
=

1

4πηρ
(68)

This leads to

A = B =
1

8πηρ
(69)

and hence the form (33) given in the main text.
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